Prognostic Models in CTCL

Youn H Kim, MD

Multidisciplinary Cutaneous Lymphoma Program Stanford Cancer Institute and School of Medicine Stanford, CA, USA

Prognostic Factors in CTCL

Prognostic Factors in CTCL

blood

2007 110: 3015-3027 Prepublished online July 16, 2007; doi:10.1182/blood-2006-12-061507

Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome

Jessica Shin, Stefano Monti, Daniel J. Aires, Madeleine Duvic, Todd Golub, David A. Jones and Thomas S. Kupper

miRNA expression profiling of mycosis fungoides

Marloes S. van Kester^a, Erica Ballabio^b, Marchina F. Benner^a, Xiao H. Chen^b, Nigel J. Saunders^c, Leslie van der Fits^a, Remco van Doorn^a, Maarten H. Vermeer^a, Rein Willemze^a, Cornelis P. Tensen^{a,*,1}, Charles H. Lawrie^{b,1}

^aDepartment of Dermatology, LUMC, Leiden, The Netherlands

^bLymphoid Malignancy Research Group, Nuffield Dept. of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK

^cSir William Dunn School of Pathology, University of Oxford, Oxford, UK

2014 123: 2034-2043 doi:10.1182/blood-2013-05-504308 originally published online February 4, 2014

PLCG1 mutations in cutaneous T-cell lymphomas

José P. Vaqué, Gonzalo Gómez-López, Verónica Monsálvez, Ignacio Varela, Nerea Martínez, Cristina Pérez, Orlando Domínguez, Osvaldo Graña, José L. Rodríguez-Peralto, Socorro M. Rodríguez-Pinilla, Carmen González-Vela, Miriam Rubio-Camarillo, Esperanza Martín-Sánchez, David G. Pisano, Evangelia Papadavid, Theodora Papadaki, Luis Requena, José A. García-Marco, Miriam Méndez, Mariano Provencio, Mercedes Hospital, Dolores Suárez-Massa, Concepción Postigo, David San Segundo, Marcos López-Hoyos, Pablo L. Ortiz-Romero, Miguel A. Piris and Margarita Sánchez-Beato

Oligonucleotide Array-CGH Identifies Genomic Subgroups and Prognostic Markers for Tumor Stage Mycosis Fungoides

Rocío Salgado^{1,2,3}, Octavio Servitje⁴, Fernando Gallardo⁵, Maarten H. Vermeer⁶, Pablo L. Ortiz-Romero⁷, Maria B. Karpova⁸, Marie C. Zipser⁸, Cristina Muniesa⁹, María P. García-Muret¹⁰, Teresa Estrach¹¹, Marta Salido^{1,3}, Júlia Sánchez-Schmidt⁵, Marta Herrera⁷, Vicenç Romagosa¹², Javier Suela¹³, Bibiana I. Ferreira¹⁴, Juan C. Cigudosa¹⁴, Carlos Barranco¹, Sergio Serrano¹, Reinhard Dummer⁸, Cornelis P. Tensen⁶, Francesc Solé^{1,3}, Ramon M. Pujol⁵ and Blanca Espinet^{1,3}

A specific DNA methylation profile correlates with a high risk of disease progression in stage I classical (Alibert-Bazin type) mycosis fungoides

G. Ferrara,¹ M. Pancione,³ C. Votino,³ P. Quaglino,⁴⁻⁵ C. Tomasini,⁴⁻⁵ M. Santucci,⁶ N. Pimpinelli,⁶ F. Cusano,² L. Sabatino³ and V. Colantuoni³

¹Department of Oncology, Pathology Unit and ²Dermstology Unit, "Gietano Rummo" General Hospital, Benevento, Italy ³Department of Sciences and Technologies, University of Sannio, Benevento, Italy ⁴Dermstologic Clinic, Department of Medical Sciences, University of Turin, Turin, Italy ⁵Anatomic Pathology Unit, Hospital City of the Health and Science, Turin, Italy ⁴Department of Surgery and Translational Medicine, Divisions of Dermstology and Aeatomic Pathology, University of Florence, Florence, Italy

blood

2010 116: 1105-1113 Prepublished online May 6, 2010; doi:10.1182/blood-2009-12-256719

MicroRNA expression in Sézary syndrome: identification, function, and diagnostic potential

Erica Ballabio, Tracey Mitchell, Marloes S. van Kester, Stephen Taylor, Heather M. Dunlop, Jianxiang Chi, Isabella Tosi, Maarten H. Vermeer, Daniela Tramonti, Nigel J. Saunders, Jacqueline Boultwood, James S. Wainscoat, Francesco Pezzella, Sean J. Whittaker, Cornelius P. Tensen, Christian S. R. Hatton and Charles H. Lawrie

Molecular medical management

- Diagnostic
- Prognostic
- Actionable alteration/pathway (relevant + targetable)

Validation in larger sample size Rigorous clinical annotation Deliver precision management Revisions to the staging and classification of mycosis fungoides and Sézary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC)

Elise Olsen,¹ Eric Vonderheid,² Nicola Pimpinelli,³ Rein Willemze,⁴ Youn Kim,⁵ Robert Knobler,⁶ Herschel Zackheim,⁷ Madeleine Duvic.⁸ Teresa Estrach.⁹ Stanford Lamberg.² Gary Wood.¹⁰ Reinhard Dummer.¹¹ Annamari Ranki.¹² Gunter Burg,¹¹ Peter Heald,¹³ Mark Pittelkow,¹⁴ Maria-Grazia Bernengo,¹⁵ Wolfram Sterry,¹⁶ Liliane Laroche,¹⁷ Franz Trautinger,⁶ and Sean Whittaker,¹⁸ for the ISCL/EORTC

2007; 110:1713

JCO 2011:29:2598

2010:28:4730

JOURNAL OF CLINICAL ONCOLOGY

Nita Sally Agar, Emma Wedgeworth, Siobhan Crichton, Tracey J. Mitchell, Michael Cox, Silvia Ferreira, Alistair Robson, Eduardo Calonie, Catherine M. Stefanato, Elizabeth Marv Wain, Bridget Wilkins, Paul A. Fields, Alan Dean, Katherine Webb, Julia Scarisbrick, Stephen Morris, and Sean J. Whittaker

Т Ν Stage Μ Description of TNMB IA 1 0 0 Limited patches, papules, and/or plaques covering IB 2 0 0 < 10% of the skin surface; may further stratify into IIA 1-2 1, 2, X 0 1a (patch only) v T1b (plaque ± patch 3 IIB 0-2, X 0 Patches, papules, or plaques covering $\geq 10\%$ of the skin surface; may further stratify into T (patch only) v IIIA 4 0-2, X 0 IIIB 4 0-2, X 0 One or more turnors (≥ 1 cm diameter) 1-4 0-2, X 0 IVA₁ Confluence of erythema covering ≥ 80% body surface IVA-1-4 3 0 IVB 1-4 0-3, X 1 No clinically abnormal lymph nodes; biopsy not required

Table 2. Modified ISCL/EORTC Revisions to the Staging of MF/SS1

В

0, 1

0, 1

0, 1

0, 1

0

1

2

0-2

0-2

Visceral Mo

N₃

TNMB Stages

Skin* T₁

 T_2

T₃

Ta

Node

No

N₁

 N_2

N_{1a}

N_{1b}

N_{2a}

N_{2b}

M₁ Blood Bo

> Boa Bob B₁

> > B_{1b}

 B_2

meet the criteria of B₂ B_{1a}

Clone negative

Clone positive

Clone negative

Clone positive

positive clone‡; one of the following can be substituted for Sézary cells: CD4/CD8 ≥ 10, CD4+CD7- cells ≥ 40% or CD4+CD26- cells ≥ 30%

Table 1. Modified ISCL/EORTC Revisions to the TNMB Classification

of MF/SS

(plaque ± patch)

grade 1 or NCI LNo-2

Grade 2 or NCI LN₃

histologic subcategories

Clone negative

Clone positive

Clone negative

Clone positive

Actuarial survival of stage IA vs. control population: Life-expectancy is not altered in treated patients with limited patch/plaque disease

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Survival Outcomes and Prognostic Factors in Mycosis Fungoides/Sézary Syndrome: Validation of the Revised International Society for Cutaneous Lymphomas/ European Organisation for Research and Treatment of Cancer Staging Proposal

Nita Sally Agar, Emma Wedgeworth, Siobhan Crichton, Tracey J. Mitchell, Michael Cox, Silvia Ferreira, Alistair Robson, Eduardo Calonje, Catherine M. Stefanato, Elizabeth Mary Wain, Bridget Wilkins, Paul A. Fields, Alan Dean, Katherine Webb, Julia Scarisbrick, Stephen Morris, and Sean J. Whittaker

Univariate factors: В Α 100 *Age* >60 T1a IB - T1b Male IIΔ ···· T2a IIR T2b *↑LDH* - - T3 80 IIIA of Survival (%) Probability of Survival (%) - T4 IIIB LCT IVA1 T4(3) - IVA2 ···· IVB Plaque dz (esp T2) 60 B0b (vs B0a) Probability 40 Probability (%) Poikiloderma 60 Hypopig 20 20 -40 LyP 20 Overall survival Disease-specific survival rogression-free surviva 0 30 10 20 5 10 20 30 Folliculotropism 10 15 30 0 Time Since Diagnosis (years) Time Since Diagnosis (years) Time Since Diagnosis (years) (early vs late, RDP)

> Independent factors of OS/DSS in multivariate model: TNMB, gender, age, LDH, folliculotropism

Cancer Therapy: Clinical

Long-term Outcomes of 1,263 Patients with Mycosis Fungoides and Sézary Syndrome from 1982 to 2009

Rakhshandra Talpur¹, Lotika Singh¹, Seema Daulat¹, Ping Liu², Sarah Seyfer¹, Tanya Trynosky¹, Wei Wei², and Madeleine Duvic¹

0.8

0.6

0.4

0.2

0

0

5

T1a+T2a OS (n = 576)

T1a+T2a DSS (n = 576)

T1a+T2a PFS (n = 575)

T1b+T2b OS (n = 341) T1b+T2b DSS (n = 341)

T1b+T2b PFS (n = 341)

10

15

20

Survival in years

25

ycosis 2009

2012: 18:5051

Clinical

Cancer

Research

35

40

30

Unfavorable: ↑Age ↑LDH ↑WBC ↑B2-microglobulin LCT Plaque dz Extent of T3 lesions Young African Am F

Cohort N = 1,263

Caucasian 73%; AA

Median age, 55 MF 1,062; SS 186

M 52%

13%

<u>Favorable:</u> Poikiloderma LyP

<u>Not significant:</u> Gender Folliculotropism hypopig CD25, CD30

Time Course, Clinical Pathways, and Long-Term Hazards Risk Trends of Disease Progression in Patients With Classic Mycosis Fungoides

Cancer 2012;118:5830

A Multicenter, Retrospective Follow-Up Study From the Italian Group of Cutaneous Lymphomas

Pietro Quaglino, MD¹; Nicola Pimpinelli, MD²; Emilio Berti, MD³; Piergiacomo Calzavara-Pinton, MD⁴; Giuseppe Alfonso Lombardo, MD⁵; Serena Rupoli, MD⁶; Mauro Alaibac, MD⁷; Ugo Bottoni, MD^{8,9}; Angelo Carbone, MD¹⁰; Paolo Fava, MD¹; Michele Fimiani, MD¹¹; Angela Maria Mamusa, MD¹²; Stefano Titli, MD¹; Pier Luigi Zinzani, MD¹³; Maria Grazia Bernengo, MD¹; and On behalf of the Gruppo Italiano Linfomi Cutanei (GILC) Cohort N = 1,422 1975-2010 Classic MF only No SS Median age, 59 M/F = 1.72 median f/u, 15 yr

RDP according to initial stage at diagnosis

Maximum stage	IA	IB	IIA	IIB	IIIA	IIIB	IVA1	IVA2	IVB	Disease
Stage at diagnosis										Progression
IA (n=552)	412 (74.6%)	40 (7.2%)	20 (3.6%)	37 (6.7%)	16 (2.9%)	1 (0.2%)	12 (2.2%)	5 (0.9%)	9 (1.6%)	140 (25.4%)
IB (n=556)		396 (71.2%)	24 (4.3%)	63 (11.3%)	29 (5.2%)	7 (1.3%)	14 (2.5%)	12 (2.2%)	11 (2.0%)	160 (28.8%)
IIA (n=122)			73 (59.8%)	12 (9.8%)	12 (9.8%)	2 (1.6%)	9 (7.4%)	11 (9.0%)	3 (2.5%)	49 (40.2%)
IIB (n=78)				44 (56.4%)	6 (7.7%)	0	10 (12.8%)	10 (12.8%)	8 (10.2%)	34 (43.6%)
IIIA (n=82)					50 (61.0%)	7 (8.5%)	15 (18.3%)	7 (8.5%)	3 (3.7%)	32 (39.0%)
IIIB (n=11)						5 (45.5%)	4 (36.4%)	2 (18.2%)	0	6 (54.5%)
IVA1 (n=1)							1	0	0	-
IVA2 (n=9)								8 (88.9%)	1 (11.1%)	1
IVB (n=1)									1	-

Only "classic" MF included; excluded folliculotropic, pagetoid reticulosis, granulomatous

- Cumulative %DP from early stage to advanced stage, 21.5% (14.5% IA 40.1% IIA)
 - %DP to stage IVA1, 2.2% 7.4%, to stage IVA2 0.9% 9%, to stage IVB up to 2.5%

Clinical factors in CTCL

- Age
- TNMB/clinical stage
 - T2 (plaque worse than patch), T3 (extent of tumors), T4 (+/- T3)
 - N (clone neg vs pos), N1 v N2 v N3, number of LN sites
 - M (solid organ vs BM), M0 vs M1
 - B0 (clone neg vs pos) vs B1, B2, +/- high SC load (B3)
 - Stage IA-IIA vs IIB-IV, +/- extracutaneous dz (stage IV)
- MF clinical variants, more relevance in early vs advanced
 - Follicular (unfavorable; early vs advanced stage)
 - Poikilodermatous (favorable), hypopigmented (favorable)
 - +/- LyP (favorable)
- Change in pace, aggressive clinical behavior (+/- ↑large cells)
- Gender, ethnicity (geographic variation)

Histologic and laboratory factors in CTCL

- Large cell transformation
 - Histologic criteria = "large cells form microscopic nodules or >25% of infiltrate"
 - +/- associated aggressive clinical behavior
 - If clinically aggressive => bad, triggers intensification of tx
- Folliculotropism (early vs advanced stage dz)
- Tissue tumor cell features
 Ki-67, CD30, CD25
- Tissue tumor microenvironment

 CD8+ CTL, Tregs, macrophages, B cells
- ↑LDH, ↑beta-2 microglobulin, eosinophilia/IgE
- Soluble CD25, CD30, cytokine/cytokine receptor levels

Transformation of Cutaneous T Cell Lymphoma to Large Cell Lymphoma

A Clinicopathologic and Immunologic Study

KEVIN E. SALHANY, MD,* JOHN B. COUSAR, MD,* JOHN P. GREER, MD,† TERENCE T. CASEY, MD,* JAMES P. FIELDS, MD,‡ and ROBERT D. COLLINS, MD,* From the Divisions of Hematopathology,* Hematology,† and Dermatology,‡ Department of Pathology and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee

CTCL can transform morphologically into a large-cell variant a/w aggressive behavior and shortened survival

- Clinical-path process is similar to transformations of other hematopoietic or lymphoid neoplasms
- Histologic criteria = "large cells form microscopic nodules or >25% of infiltrate throughout"

Cancer

NCCN

ve NCCN Guidelines Version 2.2015 Mycosis Fungoides/Sezary Syndrome

NCCN Guidelines Index NHL Table of Contents Discussion

Footnote that distinguishes indolent vs aggressive clinical behavior

Prognostic index models in CTCL

Integration of prognostic data to generate meaningful risk groups

Prognostic index for CTCL *Do we need one?*

- MF/SS TNMB/staging system is not adequate for prognostication
 - Wide range of clinical outcome within clinical stage
- Prognostic model that can augment current TNMB/ staging, enable precision, risk-stratified management would improve clinical outcome
- Allows clinical trials design by risk groups
 - More meaningful safety, efficacy, biomarker data
 - Better assessment of risk/benefit and unmet need

Beyond TNMB/stage: how can we predict the good from the bad within a stage/IIB?

- Are there additional clinical, path, lab factors, other biomarkers that distinguish between indolent and aggressive IIB?
- Can we identify which IIB pts will have worse outcome with distinguishing markers?

Are these adverse markers actionable targets or pathways that can be addressed and improve outcome?

A cutaneous lymphoma international prognostic index (CLIPi) for mycosis fungoides and Sezary syndrome

E.C. Benton^a, S. Crichton^b, R. Talpur^c, N.S. Agar^a, P.A. Fields^d, E. Wedgeworth^a, T.J. Mitchell^a, M. Cox^f, S. Ferreira^a, P. Liu^c, A. Robson^a, E. Calonje^a, C.M. Stefanato^a, B. Wilkins^g, J. Scarisbrick^a, E.M. Wain^a, F. Child^a, S. Morris^a, M. Duvic^{c,h}, S.J. Whittaker^{a,e,*}

Risk stratification in early (I-IIA) and late/advanced (IIB-IV) stage MF/SS

Derivation set with St John/UK data (n=1502)

5 independent prognostic factors relevant in early and late stage disease

3 risk groups

- Low-risk, 0-1 factors
- Intermediate-risk, 2 factors
- High-risk, 3-5 factors

Exclusion of SS (n=104) from late stage model did not alter results

Validation set with MDACC/US data (n=1221)

n	St John/UK
	n=1502

MDACC/US n=1221

Results of the Cox regression analysis for early and late stage disease in 1502 patients (derivation set) and for 1221 patients (validation set).

	Adverse factor	Derivation				Validation			
		N (%)	HR	95% CI	p-Value	N (%)	HR	95% CI	p-Value
Early	Male	636(60.2)	1.90	1.37-2.63	< 0.001	449(50.7)	1.41	0.87-2.28	0.162
	>60 years Plaques	356(33.7) 534(50.5)	3.88 1.64	2.87-5.27 1.20-2.25	<0.001 0.002	339(38.4) 319(36.0)	2.83	2.31-6.55	<0.001 <0.001
	Folliculotropic N1/Nx	161(15.2) 85(8.0)	1.65 1.90	1.14–2.37 1.37–2.63	0.007 <0.001	31(3.5) 46(5.2)	1.61 1.26	0.50-5.24 0.54-2.96	0.425 0.591
Late	Male >60 years	297(66.7) 274(61.6)	1.35	1.03-1.96	0.030	211(59.8)	0.86	0.63-1.19	0.367 <0.001
	B1/B2 N2/N3 Visceral (M1)	175(39.3) 134(30.1) 13(2.9)	1.50 1.65 2.28	1.17–1.91 1.28–2.12 1.23–4.26	0.001 <0.001 0.009	188(53.3) 80(22.7) 4(1.13)	1.29 1.26 1.10	0.93–1.77 0.88–1.79 0.27–4.51	0.133 0.205 0.899
		()	2.20	1.20	0.007	.()		0.27 1.01	0.077

Table 1

Late

Derivation (UK) Early/IA-IIA, n= 1057 Late/IIB-IV, n= 445 5 independent factors in each 3 risk groups • Low-risk, 0-1 factors • Intermediate-risk, 2 factors • High-risk, 3-5 factors

Early stage (I-IIA) risk groups

Late/advanced stage (IIB-IV) risk groups

Limitations of published studies

- Retrospective and/or single-center
- Changes in CL classification
- Lack of consistency in definition/criteria
 - Criteria for folliculotropic disease, clonality method, LN scoring, etc. may vary
- Bias in pt inclusion or ordering tests
 - Referral center bias
 - Lab test (flow, molecular studies) or imaging may be ordered in those with more severe disease or concern of progression
- Problems with missing data, inconsistent data completion
 - False interpretation of no data as negative data

Cutaneous Lymphoma International Consortium (CLIC): an International Alliance for Large-Scale Collaborative Investigations in Cutaneous Lymphoma

CLIC Background & Goals

- CLIC is project-based, research collaborative alliance of CL expert centers worldwide to generate large-scale clinical and translational data for greater impact
- Initiated as ISCL-based interest in late 2012, officially supported by EORTC, USCLC, and other regional CL organizations
- Although inclusive in concept, the participants/sites are primarily determined by proposed projects, funding, and commitment

Multicenter Prospective Study for Development of a CL International Prognostic Index in Mycosis Fungoides and Sézary syndrome (PROCLIPI)

Cutaneous Lymphoma International Consortium 'CLIC' <u>Initial</u> Collaborative Project

PROCLIPI Study

- This project aims to collect well-defined parameters at initial diagnosis, progression events, and annual update
 - Clinical/Lab
 - Pathological/molecular
 - Dermpath, Hemepath
- These prognostic variables will be tested against overall & progression free survival
- CLIC federated Biobank establishment (Led by Maarten Vermeer)

PROCLIPI study as initial collaborative project

<u>Steps</u>

- **Retrospective feasibility studies** that shows CLIC can be productive, *led by Julia Scarisbrick and Pietro Quaglino*
 - Retrospective study of key prognostic parameters
 - Retrospective treatment-focused analysis
 - Highlight issues with retrospective study
- Set ground work for prospective study
 - PROCLIPI work groups to identify candidate parameters and establish well-defined criteria for consistency
 - Investigator meetings (Paris/EORTC, Stanford/ASH)
 - Bridge funding towards securing larger awards

Cutaneous Lymphoma International Consortium (CLIC) Study of Outcome in Advanced Stages of Mycosis Fungoides & Sézary Syndrome: Effect of specific prognostic markers on survival and development of a prognostic model

Julia J Scarisbrick1, H.Miles Prince², Maarten H Vermeer³, Pietro Quaglino⁴, Steven Horwitz⁵, Pierluigi Porcu⁶, Rudolf Stadler⁷, Gary S. Wood⁸, Marie Beylot-Barry⁹, Anne Pham-Ledard⁹, Francine Foss¹⁰, Michael Girardi¹⁰, Martine Bagot¹¹, Laurence Michel¹¹, Maxime Battistella¹¹, Joan Guitart¹², Timothy M Kuzel¹², Maria Estela Martinez-Escala¹², Teresa Estrach¹³, Evangelia Papadavid¹⁴, Christina Antoniou¹⁴, Dimitis Rigopoulos¹⁴, Vassilki Nikolaou¹⁴, Makoto Sugaya¹⁵, Tomomitsu Miyagaki¹⁵, Robert Gniadecki¹⁶, José Antonio Sanches¹⁷, Jade Cury-Martins¹⁷, Denis Miyashiro¹⁷, Octavio Servitje¹⁸, Cristina Muniesa¹⁸, Emilio Berti¹⁹, Francesco Onida¹⁹, Laura Corti¹⁹, Emilia Hodak²⁰, Iris Amitay-Laish²⁰, Pablo L Ortiz-Romero²¹, Jose L Rodríguez-Peralto²¹, Robert Knobler²², Stefanie Porkert²², Wolfgang Bauer²², Nicola Pimpinelli²³, Vieri Grandi²³, Richard Cowan²⁴, Alain Rook²⁵, Ellen Kim²⁵, Alessandro Pileri²⁶, Annalisa Patrizi²⁶, Ramon M Pujol²⁷, Henry Wong⁶, Kelly Tyler⁶, Rene Stranzenbach⁷, Christiane Querfeld^{5,28}, Paolo Fava⁴, Milena Maule⁴, Rein Willemze³, Felicity Evison¹, Stephen Morris²⁹, Robert Twigger², Rakhshandra Talpur³⁰, Jinah Kim³¹, Grant Ognibene³¹, Shufeng Li³¹, Mahkam Tavallaee³¹, Richard T Hoppe³¹, Madeleine Duvic³⁰, Sean J Whittaker²⁹ and Youn H Kim³¹

U Hosp Birmingham, UK; 2. Peter MacCallum CC East Melbourne, Victoria, Australia; 3. Leiden U, The Netherlands; 4. U of Turin, Italy; 5. Memorial Sloan Kettering CC, New York, US; 6. Ohio State Univ, Ohio, USA; 7. Unit U Munster, Minden, Germany; 8. U of Wisconsin, USA; 9. CHU Hosp de Bordeaux, Bordeaux, France; 10. Yale U, New Haven, Conneticut, USA; 11. Hosp St Louis, Paris, France; 12. Northwestern U, Chicago, USA; 13. Hosp Clínico, U of Barcelona, Villarroel, Barcelona, Spain; 14. Athens U Med Sch, Greece; 15. U of Tokyo, Tokyo, Japan; 16. Bispebjerg Hosp, Copenhagen U, Denmark; 17. U of Sao Paulo Med Sch, Brazil; 18. Hosp U de Bellvitge, Idibell, Barcelona, Spain; 19. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico - U of Milano-Bicocca, Italy; 20. Rabin Medical , Beilinson Hosp, Tel Aviv U, Israel; 21. Hosp 12 de Octubre. Institute i+12. Med Sch. U Complutense, Madrid, Spain; 22. Med U of Vienna, Austria; 23. U of Florence, Florence, Italy; 24. The Christie Hosp, Manchester, UK; 25. U of Pennsylvania, Pennsylvania, USA; 26. U of Bologna, Bologna, Italy; 27. Hosp del Mar. U Autònoma Barcelona, Barcelona, Spain; 28. City of Hope Hosp, Duarte, CA, US; 29. St Thomas' Hosp, London, UK; 30. MD Anderson CC, Houston, USA; 31. Stanford U, California, USA

	No. of patients	Median OS mnths	IQR OS mnths	RM Survival mnths	1- year OS	2-year OS	5-year OS
IIB	457	68.37	31.0 – NR	59.5	88.50%	80.10%	57.40%
III (all*)	320	NR	36.8 – NR	60.9	89.50%	79.50%	58.20%
IIIA	187	NR	35.2 – NR	61.7	89.60%	79.80%	60.20%
IIIB	119	62.4	32.8 – NR	58.2	88.50%	77.80%	55.70%
IVA (all)	463	47.5	22.3 – NR	50.9	87.60%	73.20%	42.90%
IVA1	290	52.7	31.5 – NR	55.7	90.40%	79.40%	48.30%
IVA2	127	29	13.6 - 68.7	40.4	81.00%	59.60%	32.90%
IVB	35	33.3	14.0 – NR	42.5	78.50%	54.30%	39.00%
Stages (all)	1275	63	25.4 – NR	56.3	88.10%	76.60%	51.90%

Fig 1Kaplan Meier Showing Survival by Stage

Data	Parameter	No. of	Median	IQR	RM	Probability of survival			P value
completeness n=patient number (%)		patients	OS	Survival months	Survival	to at least 1 vear	to at least 2 years	to at least 5 years	
Sex:	Male	789	63.0	25.0 – NR	56.2	87.3%	76.0%	52.1%	P=0.937
n =1262 (99.0%)	Female	473	60.3	26.1 – NR	55.8	89.3%	77.3%	50.4%	
Age	≤60 years	452	NR	34.2 – NR	63.6	92.8%	84.7%	62.5%	P<0.001
n =1265 (99.2%)	>60 years	813	51.0	21.7– NR	51.7	85.4%	71.9%	45.6%	
FT	FT - absent	879	57.5	24.4 – NR	54.6	87.9%	75.2%	49.3%	P<0.001
n = 1062 (83.3%)	FT - Yes	183	NR	44.8 – NR	65.9	91.4%	86.6%	66.5%	1
WCC	Raised WCC	252	37.7	17.8-78.8	44.3	85.8%	67.5%	35.3%	P=0.006
n =716 (56.2%)	Non raised WCC	436	54.4	24.8 – NR	53.8	87.9%	75.8%	46.1%	
Absolute	Low WCC	28	57.5	34.4 – NR	60.0	95.5%	84.9%	48.8%	1
lymphocyte	Raised ALC	248	52.7	24.5- NR	53.5	88.8%	76.8%	49.5%	P=0.358
n =847	Non Raised ALC	485	57.3	23.4NR	54.7	87.8%	74.1%	48.4%	
(00.4%)	Low ALC	114	42.2	18.6 – NR	47.4	82.0%	72.0%	37.8%	1
LDH	Raised LDH	457	44.7	19.2- NR	48.6	84.6%	68.6%	39.0%	P<0.001
n =894 (70.1%)	Non Raised LDH	437	78.8	33.2- NR	60.5	90.9%	81.9%	58.4%	
TCR Clone n - 727 (57.0%)	Identical Clone Blood to skin Y	357	49.8	24.4– NR	53.8	88.4%	76.2%	45.6%	P=0.086
	No identical Clone blood to skin N	370	73.4	30.2– NR	59.3	87.1%	78.5%	58.7%	
LCT	LCT - Yes	215	49.8	20.1– NR	48.9	84.8%	68.6%	38.5%	p=0.003
n =1098 (86.1%)	LCT - No	883	66.2	27.7– NR	57.8	89.3%	78.4%	54.9%	1
CD 30 n =639	CD30 +ve >10%	149	55.7	22.3– NR	54.9	88.6%	74.6%	44.9%	p=0.331
(50.1%)	CD30 +ve ≤10%	490	68.7	28.0- NR	58.7	87.8%	78.2%	56.7%	
Ki 67 n =471	Ki 67 +ve >20%	182	50.1	25.2– NR	55.9	89.3%	76.9%	46.8%	p=0.552
(36.9%)	Ki 67 +ve ≤20%	289	NR	30.8– NR	58.7	86.7%	78.6%	55.6%	1

Risk of Poor	Ν	N	N	N	1-year	2-year	5-year	Median	Hazard ratio
Survival	(deaths)	IIB		IV	survival	survival	survival	OS	(95% Cl, p-
(No. of risk factor)					months	months	months	months	value)
Low	227/100)	100	124	27			67.0	ND	1
(0-1)	327(100)	166	134	27	94.0	86.6	67.8	NR	1
Intermediate	220 (122)	01	02	156	02.0	71.0	42 5	16.1	2.09 (1.56,
(2)	529 (125)	51	02	150	83.9	/1.9	43.5	40.4	2.80; p<0.001)
High	201/100)	20	4	177	94 7	62.2	27.6	24.2	2.91 (2.15,
(3-4)	201(100)	20	-	1//	04.7	02.2	27.0	54.2	3.96; p<0.001)

Prognostic model Independent variables: age >60, stage IV, ↑LDH, LCT+ Low risk = 0-1 Intermediate risk = 2 High risk = 3-4

PROCLIPI: Prospective Study to Determine Prognostic Parameters, CL Prognostic Index, and Impact of Major Therapies in Advanced MF and SS

- Aim 1. Determination of prognostic factors in advanced MF and SS in a prospective design
- Aim 2. Development of Cutaneous Lymphoma International Prognostic Index (CLIPI) towards improved prognostication and stratification for management in advanced MF and SS
- Aim 3. Characterization of geographic pattern of treatment utilization and CLIPI-based differential clinical outcome of major systemic treatments in advanced MF and SS
- Establishment of SOP for federated Biobank for future CLIC translational projects

CLIC Steering Committee

Youn Kim (US), US Director, Stanford Cancer Institute Julia Scarisbrick (UK), Non-US Director, U Hospital Birmingham **Pietro Quaglino** (Italy), PROCLIPI Project Director, U of Turino **Maarten Vermeer** (The Netherlands), Co-Leader PROCLIPI, U of Leiden Sean Whittaker (UK), Co-Leader PROCLIPI, Guys and St Thomas Gary Wood (US), Co-Leader PROCLIPI, Path/Molecular, U of Wisconsin Richard Hoppe (US), Co-Leader PROCLIPI, Radiation Oncology, SCI Madeleine Duvic (US), Dermatology, MD Anderson CC **Miles Prince** (Australia), Haematology/Oncology, Peter MacCallum CC **Steve Horwitz** (US), Medical Oncology, Memorial Sloan Kettering CC **Pierluigi Porcu** (US), Medical Oncology, OSU, representative of USCLC **Rudolf Stadler** (Germany), Dermatology, representative of EORTC CLTF Joan Guitart (US), Dermatology, Pathology, NWU **Alistair Robson** (UK), Pathology, Guys and St Thomas

PROCLIPI Work Groups

Clinical/lab

- Julia Scarisbrick
- Madeleine Duvic
- Steve Horwitz
- Pierluigi Porcu
- Rudi Stadler

Treatment

- Pietro Quaglino
- Steve Horwitz
- Youn Kim
- Miles Prince
- Pierluigi Porcu

Biobank

- Maarten Vermeer
- Sean Whittaker
- Wen-Kai Weng
- Gary Wood

Pathology/Molecular

- Gary Wood
- Joan Guitart
- Jinah Kim
- Werner Kempf
- Dennis Weisenburger
- Alejandro Gru

Regulatory & Data Management

- Rich Hoppe
- John Allen
- Antonio Cozzio
- Sean Whittaker
- Data manager, statistician reps

Future Projects, Grant Applications, Publications Committees

Prognostic Models in CTCL Work-in-progress summary, 2015

- In MF/SS, clinical factors (TNMB, stage, age) as consistent basic prognostic factors, additional variables to consider
 - Early stage MF, plaque+ and folliculotropism+
 - Advanced stage MF & SS, stage IV, *↑*LDH, and LCT+ as independent adverse factors of importance
- Integrated prognostic models are needed to augment prognosticating power for improved risk-stratification
- Establishment of CLIC, an unprecedented scale of international collaborative alliance, allows an opportunity for prospective validation and translation, *PROCLIPI*
- Importance of molecular/biomarker discoveries with prognostic value, validated before utilized in the clinics
- Taking steps towards personalized, precision medicine